Mutation of Archaeal Isopentenyl Phosphate Kinase Highlights Mechanism and Guides Phosphorylation of Additional Isoprenoid Monophosphates

نویسندگان

  • Nikki Dellas
  • Joseph P. Noel
چکیده

The biosynthesis of isopentenyl diphosphate (IPP) from either the mevalonate (MVA) or the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway provides the key metabolite for primary and secondary isoprenoid biosynthesis. Isoprenoid metabolism plays crucial roles in membrane stability, steroid biosynthesis, vitamin production, protein localization, defense and communication, photoprotection, sugar transport, and glycoprotein biosynthesis. Recently, an alternative branch of the MVA pathway was discovered in the archaeon Methanocaldococcus jannaschii involving a small molecule kinase, isopentenyl phosphate kinase (IPK). IPK belongs to the amino acid kinase (AAK) superfamily. In vitro, IPK phosphorylates isopentenyl monophosphate (IP) in an ATP and Mg(2+)-dependent reaction producing IPP. Here, we describe crystal structures of IPK from M. jannaschii refined to nominal resolutions of 2.0-2.8 A. Notably, an active site histidine residue (His60) forms a hydrogen bond with the terminal phosphate of both substrate and product. This His residue serves as a marker for a subset of the AAK family that catalyzes phosphorylation of phosphate or phosphonate functional groups; the larger family includes carboxyl-directed kinases, which lack this active site residue. Using steady-state kinetic analysis of H60A, H60N, and H60Q mutants, the protonated form of the Nepsilon(2) nitrogen of His60 was shown to be essential for catalysis, most likely through hydrogen bond stabilization of the transition state accompanying transphosphorylation. Moreover, the structures served as the starting point for the engineering of IPK mutants capable of the chemoenzymatic synthesis of longer chain isoprenoid diphosphates from monophosphate precursors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Streptomyces-produced antibiotic fosfomycin is a promiscuous substrate for archaeal isopentenyl phosphate kinase.

Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superpos...

متن کامل

Discovery of a metabolic alternative to the classical mevalonate pathway

Eukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon is...

متن کامل

Structural genomics of enzymes involved in sterol/isoprenoid biosynthesis.

X-ray structures of two enzymes in the sterol/isoprenoid biosynthesis pathway have been determined in a structural genomics pilot study. Mevalonate-5-diphosphate decarboxylase (MDD) is a single-domain alpha/beta protein that catalyzes the last of three sequential ATP-dependent reactions which convert mevalonate to isopentenyl diphosphate. Isopentenyl disphosphate isomerase (IDI) is an alpha/bet...

متن کامل

Myeloproliferative Neoplasms Associated with Mutation in JAK2V617F and Tyrosine Kinase Inhibitors as Therapeutic Strategy

MPNs including a heterogeneous group of clonal or oligoclonal hamtopathies characterized by proliferation and accumulation of mature myeloid cells. JAK2 tyrosine kinase mutation is the most common molecular lesion identified in 90% of cases. JAK2 is involved in EPO signaling pathway, and mutations in it lead to EPO-independent spontaneous phosphorylation. Most tyrosine kinase inhibitors (TKI) a...

متن کامل

Identification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus.

Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010